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Characterization of Partially Ordered
Classes of Life Distributions.

by

Naftali A. Langberg, Ramôn V. Leôn, and Frank Proschan

ABSTRACT

In this paper we obtain characterizations of life distributions F such

that (a) G~~(F) is convex (concave) and alternatively (b) G
4(F) is starshaped

(antistarshaped) , where G is an absolutely continuous life distribution with

positive, bounded , right continuous density. These characterizations generalize

earlier results for the IPR(DPR) and IFRA (DFRA) classes, and should prove

useful in unifying the study of the class of distributions with decreasing

density, comparing Weibull (Gamma) distributions with different shape parameters,

etc. 
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1. Introduction.

In a previous paper (Langberg, Leân, and Proschan , 1978) , we obtain

characterizations of large classes of standard nonparametric life distributions,

such as the IFR(DFR) , IFRA(DFRA) , etc. (See Section 2 for definitions and nota-

tion.) These characteriz.~tions are obtained under the weakest possible assumptions

that we can make concerning the life distributions being characterized.

In the present paper, we continue our characterization work and also

obtain additional results in one direction of implication, but now we focus

on more general classes of distributions, many of them of interest and app licable

in reliability. We consider classes of distributions F such that G4(F) is

convex (concave) or starshaped (antistarshaped) , where G is a known distribution.

The assumption that C is known is reasonable in many practical situations, as

seen from the following pairs (F, G) such that G~~(F) is convex: (1) 6 is

exponential, F is IFR; (2) C is uniform, F has decreasing density; (3) G is

Weibull (Gamma) with shape parameter a, F is Weibull (Gamma) with shape parameter

B(~a); etc. Similar pairs can be displayed for G~~(F) is starshaped. Since

we assume G known and F unknown, we make convenient smoothness assumptions

for G, but as few assumptions about F as possible.

As pointed out in Barlow and Proschan (1975), Barlow and Doksum (1972),

Barlow and Van Zwet (1970) , the advantage of considering these more general

classes is that many results, tests, methods of inference, methods of proof,

etc., of use in the IFR(DPR) , IFRA(DFRA) classes carry over with minor modifi-

cations to the corresponding more general classes.

In Section 2, we present definitions, notation , and elementary properties.

In Section 3, we obtain characterization results for the Barlow-Doksuin
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transform, a generalization of the well known total time on test transform.

These results are not simply of theoretical interest, but can be used to develop

tests as to whether a set of underlying data come from a Weibull with greater

shape parameter than say cz(>O). For example, Barlow (personal comnunication)

has found that increasing stress often leads to increasing shape parameter of

the Weibull governing lifelength. In Section 4, characterization results

for convex and concave ordering are obtained in terms of order statistics

or their spacings. Section 5 is devoted to characterization of starshaped

and antistarshaped orderings in terms of order statistics; spacings are not

useful in these characterizations.
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2. Preliminaries.

Let F be a life distribution, that is, F(0-) 0. We use the following

notation and conventions: F~~(t) inf{x: F(x) > t}, t c (0, 1);

F~~(l) sup{x: F(x) c l}; ~ 1 - F; R -Ln~. We use “increasing ’ in place

of “nondecreasing” and “decreasing” in place of “nonincreasing’. Throughout

the paper we assume that G is a fixed absolutely continuous life distribution

with positive, bounded, and right continuous density g on the interval

(G~~(0), G~~(l)). Let X1, X2, ... , X~ (Y1, Y2, ... , Y )  be a random sample

of size n from F(G) and let < < c  Xn:n ~~l:n < ‘
~2:n ~~~ 

< 

~
‘n:n~ 

be

the corresponding order statistics.

Definition 2.1. The life distribution F is convex with respect to C,

written F < G, if either (i) F is degenerate or (ii) G 1F is convex on

(—., F~~(l)).

Definition 2.2. The life distribution F is concave with respect to 6,

written F& C if G
1F is concave on (F 1(0) ,  co) .

Let F be nondegenerate, strictly increasing on (F~~(0) ,  F~~(l)) and

G4(l) - ~~~. Then F G if and only if G~~~F. This relationship is the reason

only convex ordering is usually defined in the literature (see for example

Barlow and Proschan, 1975, p. 106). However without assumptions on F, the

two orderings are not so easily related.

We define the increasing failure rate (IFR) and shifted ~~~~ asin failure

rate (SDFR) classes of life distributions.

Definition 2.3. The life distribution F is IFR if either (i) F is

degenerate or (ii) R(x) is convex on (.co, P~~(l) ) .

Definition 2.4. The life distribution F is SDFR if R(x) is concave on

(F~~(0), 
~
).

— -
~~~~~S 
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If C is t :~~ exponential distribution with mean 1, then G 1F - R. Hence

F is IFR(SDFR) if and only if F is convex (concave) with respect to any expo-

nential distribution.

If G is the uniform distribution on [0, a], a > 0, then F~~~G is equivalent

to F having a decreasing density. If F(G) denotes the gamma distribution

with shape parameter a(8), a -c 8 then F G. The Weibull family is similarly

ordered with respect to its shape parameter (Van Zwet, 1964, and Barlow- and

Proschan, 1966).

Definition 2.5. The life distribution F is starshaped (antistarshaped)

with respect toG , written F ~ 6 (F~c~G), if~ -G~~F(t) is increasing

- - (decreasing) in t (0 -c t -c F~~(l)).

We define the increasing failure rate average (IPRA) and the decreasing

failure rate average (DFRA) classes of life distributions .

Definition 2.6. The life distribution F is IFRA(DFRA) if ~R(t) is

increasing (decreasing) in t (0 < t < F~~(1)).

Let G be any exponential distribution. Then F ~ C (F~ç~ C) if and only if

F is IFRA(DFRA). Let C be the uniform distribution on (0, a),  and F have a

density. Then F~ç C is equivalent to

(2.1) f(t)t < F(t) for t > 0.

Note that the class of distributions satisfying (2.1) contains the class of

distributions with decreasing densities.

Finally we remark that F C implies that F ~ G. Similarly, F c
5
~, 

G implies

that FSG . 

- . 
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3. Properties of the Barlow-Doksum Transform.

For a fixed C let H~~(t) f~ 
)~~~ This transform of F

was first introduced in connection with isotonic tests of convex ordering by

Barlow and Doksum (1972). Hence we call H 1 the Barlow-Doksum (B-D) transform.

When C is the exponential distribution H;’ is the usual total time on test

transform studied by Barlow (1977) , Barlow and Campo (1975), and Langberg,

Ledn, and Proschan (1978) , among others. We should remark that Chandra and

Singpurwalla (1978) have pointed out the close relationship between the total

time on test transform and the Lorenz curve used by econometrists. In this

section we develop some properties of II~~ which we use in the proofs of

Section 4.

Before stating the first theorem we need two definitions.

Definition 3.1. A point x is a point i1 increase of F if

F(x - h) -c F(x) c F(x + h) for every h > 0.

Definition 3.2. A sequence ~~~~~~ of ordered pairs of natural

numbers is a t-sequence (0 -c ~ -c 1) if (i) 1 -c kr ~ “r 
-c n

~+1 
for all r , and

(ii) kr/n • t as rr k
Let TG(Xlg:fl) • Z g(cf’(.~~L))(X~.~ - Xj_l:~)~ If C is the exponential

i—i 1distribution with mean 1, then TG(Xk.fl) - n T(X.k ), where T(Xk:n)
~~ (n - i -. l) (X~.~ - X1 1~~), is the total time on test statistics commonlyi—l .

used in reliability theory (see for example Barlow and Proschan, 1975, p. 61).

If n items are placed on test at time 0 and successive failures are observed

at times Xi:n ~ X2.~ ‘ . ~ C then T(Xk:n) represents the total test time

observed between 0 and

We may now state and prove the following theorem.

- - I- - — -- - - — — —
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Theorem 3.3. Let F 1(t) be a point of increase of F , and let (k , n)

range over a t-sequence. Then

TG(X.K ) -~~ H~~(t) a.s. as n

Proof. Let F denote the empirical distribution function of F. Then

= 11F~~
(
~~~). = j k:n g G ’F (u) du. Also for (k , n) ranging over a

t-sequence, x1J ( fl -
~~ F~~(t) a.s. as 11 -

~~ since F ’(t) is a point of increase of

F (see Rao , 1973, p. 423) . The desired result follow s by the Glivenko-Cantelli

Theorem (Chung, 1974 , p. 133) and the continuity of g 6 1. I
Next we note that if EX1 is finite, 

then and ET6(X ijy~) are also

finite. This follows since 0 < L ~ X. nI and
— k:n — . 1

TG(Xk:fl) 
~ ~~~~ 

G~~ (~~.!-)) . Z
1~~i:n 

_ X i_ i : n) -c ( sup g (x ) )X ~ .fl .

The above inequalities can be used to show also that whenever EX 1 is

finite, (TG(Xk :~
)} ,I1 is uniformly integrable for every t-sequence

{(kr~ ~r~~r i~ 
Since a uniformly integrable sequence which converges almost

surely converges in mean (see Breiman, 1973, p. 91), we have thus shown:

Theorem 3.4. Let t, k, and n be as in Theorem 3.3 and let EX1 
be finite.

Then E(TG(X1I(:fl) - H
F~~
(t) I ÷ 0 as. as n + °°. In particular, ETG(Xk:fl) -~~

H~~(t) as n 
-

As shown in Langberg, Ledn, and Proschan (1978), neither Theorem 3.3

nor Theorem 3.4 is true if F~~(t) is not a point of increase of F. Theorems

3.3 and 3.4 contain as special cases similar theorems of Langberg, Leon, and

Proschan (1978) concerning the total time on test statistics. Also these

theorems are related to a theorem of Barlow and van Zwet (Theorem 2.2 of

Barlow and Doksum, 1972).

-— ~~~~~~ ~~~~~ ~~~~~~~~~~~~
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Let ~f (x 0) denote the right-hand derivative of f at the point x0. We

will need the following lemma in the proof of Theorem 3.6 below .

Lemma 3.5. Let x be a point of increase and of continuity of F. Then

~H~~(F(x)) exists and is nonzero if and on ly if ‘F(x) exists and is nonzero .

In this case , ~(G~~F( x)) exists and is nonz ero, and ‘11~~ (F( x))  ‘ (G~~F(x) ) = 1.

Proof. Note that in a neighborhood of x, F ’ behaves like the usual

inverse function of F. The result follows using standard differentiation

results. I~
The following theorem relates convex (concave) ordering to the B-fl

transform.

Theorem 3.6. Let F be a life distribution. Then F C (F&G) if and

only if H~~ is concave (convex) on [0, 1).

We will need the following simple properties of H 1 in the proof of

Theorem 3.6.

(3.1) H ’(O) =

(3.2) H 1(t+) = H~~ (t) for t £ [0 , 1].

(3.3) H;’ is increasing on [0, 1].

(3.4) For y c [0, co), the set (s: H~~(s) = y} = [a , b),  where 0 < a < b < 1,

if and only if P(X1 = F~~ (a) ) = b - a.

(3.5) For 0 < a < 1, H ’(a-) = H~~ (a) if and only if F(F~’(a-)) F( F~~ (a)) .

In particular, H 1 is continuous on [a, b) if and only if every point in

(F1(a), F~~(b-)) is a point of increase of F.

Proof of Theorem 3.6. Let H 1 be concave on [0, 1). Since H 1 is increasing

on (0, 1), there exists a real number A in [0, 1) such that H~~ is strictly

increasing on (0, A] and constant on [A, I) . If A 0, H~
’ is constant on

- I~T1~~~~ -~~~~~ 
T

~~~~~~~~~ _
_

_

S
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[0, 1) and consequent ly  F 6 since in thi s case F is degenerate at

Next suppose that A > 0. It follows that ‘H~~ (t) > 0 for all t c (0, A).

Equivalently, ~H~~
’(t) > 0 for x in (F4(O), F~~(l)) since F~~(A-) =

By (3.4) and (3.5) every point of (F~~(0), F ’(l)) is a point of increase and

of continuity of F. Hence by Lemma 3.5, the concavity of H;’ implies that

exists and is increasing on (F~~(0), F
1(1)), that is, G ’F is

convex on (F 1 (0), F4(1)). Since by (3.5), F(F~~(0)) = 0, it follows that

F < C .
C

Next let F -c C. Then either F is degenerate, in which case H ’is constant

and thus concave, or C F is convex on S = (F (0) , F (1)) and F(F (0)) = 0.

We assume the latter case. If x c S and h > 0, then

0 < 
G~

1F(x) - G~~F(F~~ (Q)) 
< 
G~~F(x # h) - 64F(x)

x - F ~~(0) 
h

Consequently 0(G 1F) exists and is positive on S. Now since 
1
F = ‘

~(G~~F) 
. g(G~~F)

is positive on S, S contains only points of increase and of continuity of F.

Thus by Lenun~ 3.5, ~H
1F is decreasing on S, that is, ‘H ’ is concave on (0, 1).

By (3.2), H~~ is concave on [0, 1).

The counterpart result for concave ordering can be proved similarly. I I
Barlow and Doksum (1972) obtained the conclusion of Theorem 3.6, but

under stronger regularity conditions on F.

Corollary 3.7. (Barlow and Campo, 1975). Let 6 be any exponential

distribution. Then the life distribution F is IFR(SDFR) if and only if H~~ is

concave (convex) on [0, 1].

Our proof of Corollary 3.7 avoids some technical difficulties which arise

in the limiting argument used in the Barlow and Campo proof of the “if’ part

of Corollary 3.7.

-~ ~~- - - -  —-
- 
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4. Convex (Concave) Ordering and Order Statistics.

In this section we present a series of results concerning convex (concave)

ordering and order statistics. Our first theorem gives a sufficient condition

for P ~ ~~~) C.

Theorem 4.1. Let F and C be life distributions with finite means.

Suppose F is continuous and let 
~~‘~~:n - 

~~-l:n~’
1
~~

’k:n 
- 

~
‘
k-l :n~ 

be

decreasing (increasing) in k (k = 2 , ... , n) for infinitely many values of

n > 2. Then F~~ ~ç1,)G.

In order to prove Theorem 4.1 we need the following lemma.

Lemma 4.2. Let the conditions of Lemma 4.1 be satisfied. Then the

support of F is the interval [F~~(0) ,  F~~(l)] .

Proof. The support of a continuous distribution is a closed set without

isolated points (see Chung, 1974, p. 10). It follows that if S, the support

of F, is not an interval, then we can find a, b, and c such that (a - c, a] c

(a, b) c {x: x 4 s}, and [b, b + c) c S. Let t = F(a) = F(b), t1 = 
t + F(a - c)

Also let h > 0 be small enough so that (t1 
- h, t2 + h] c (t, F(b + c)) and

[t2 
- h, t2 + h] c (t, F(b +

Eg G~’(~-!)(X.. - X. .
~~~~ 
)

By hypothesis, -l i
n
1 

i.n i•~ ~ is decreasing (increasing) in
Eg G 

~~T~~
’
~i:n 

-

i (i — 2, 3, ... , n) for infinitely many values of n. Now observe that if

{ai}~~2 and {b~}~~2 are sequences of positive real numbers such that a~/bj isk+j k+j
decreasing (increasing) in i Ci = 2, ... , n), then ~ a

~
/ ~ b~ is decreasing

i=k i—k
(increasing) in k (k = 2, ... , n - j) for each j  (j l~ ..., n - 1). Thus

we obtain for each one of the infini tely many n that

L - - 
~~~~~~~~~

- 
. 

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

--
~~~~~~~~~~
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ET G(X([fl(t h)] [(2h)]) ) - ET
G(X[(t h)] )

ETG (Y ( [n(t h) ]+(n (2h ) I :  - ETG (Y [ (t h) ] )

(4.1) >(~) 
ET G (X ( [n(t  h ) ] +[  (2h) ])  :n~
C ([n(t—h)J+[n(2h)]):n - 

C [n(t-h)}:n

ETG (X([ (t h)I[(2h)]) 
- ETG (X [ (t h) } )

~~~~~~~~ 
ETG (Y ( E (t h) ] [ ( 2 h ) ) )  - ETG (Y [ ( h) I

)

The points at which F equals t
1 

- h , t 1 + h , t - h , t + h , t
2 

- h , and t 2 + h

are in the interior of S and are consequently points of increase of F. Applying

Theorem 3.4 to the chain of inequalities (4.1), we conclude that

+ h) - H 1(t 1 - h) H ’(t + h) - H ’(t - h)

2h 2h
(4.2) H 1(t + h) - H~~ (t - h)

— 2h

Since H~~() f~~~~
)g G~~F(u)du is continuous at t1 and t 2, by letting

h + 0 in (4.2), we conclude that 1im [H~~(t + h) - H~~(t - h) ]  = 0. But since
1

H; is increasing, this implies that H is continuous at t, or equivalently,

that F4 is continuous at t. This contradicts the fact that Fis constant on

(a, b). It follows that S must be an interval, as was to be shown. 
~

Proof of Theorem 4.1. Let t1, t2, and h be such that 0 < t1 < t
2 

< t
2 

+ h < 1.

Using the argument in the proof of Lemma 4.2 yielding (4.2), we obtain:

(4.3) H ’(t1 
+ h) - H~~(t1) ,(~) H

1(t2 + h) - H~~(t 2) .

:~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Since (4.3) is true for all t 1, t2, and h satisfying the above constraints,

H;’ must be concave (convex) on (0, 1). By Theorem 3.6, this implies that

F~~~ç~c~)G. I I
Theorem 4.3 is a partial converse to Theorem 4.1.

Theorem 4.3. Let F and C be life di st r ibutions with fini te means and

suppose F ~ 
(
~c~) C. Then

E(X - x  )
(4 4~ ‘im [n(t+h)]~n [nt]:n _

E(Y - Y  )
n-’~ [n(t + h)J:n [nt]:n

is decreasing (increasing) in t (0 < t < t + h < 1) for all h (0 < h < 1).

Proof. Let F G. Note that every element of (F4(O), F1(l)) is a

point of increase of F since F G and every element of (G4(0), C4(l)) is

a point of increase of C. Thus X[t] 
-

~~ F
4(t) a.s. and 

~
‘
[nt]:n 

+ C4(t)

a.s. as n -~ (see Rao, 1973, p. 423). We show XEntI:n is uniformly integrable.

We have P(X [flt]:fl 
> x) = P(B( n , ~(x) )>  n - [nt] + 1), where B(n , ~(x)) denotes

a binomial random variable with parameters n and F(x). Thus

(4.5) P(X
[tI 

> x) 
~~~ - (nt ] + 1~~(x)

since P(Z ‘ A) < EZ/A for any nonnegative random variable Z and any A > 0.

Hence

EX [t] I[X
[tI ~~A] = JA 

PEX Ent] 
> x]dx + APEX [t] ~~~~~~~~~

[by integration by parts]

n - (nt] + 1(J~~ (x) dx + AF(A))

(by (4.5))

1 ~1.1 + 
~ (EX

1I[X 1 > A)).

-

~~ 

T I1TT~~-TT ~~~~~~~~~ ~~~~~~ ~~T~ -T1~~~ ~~~
- -

~~~~~~
- ‘



r~ r-~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __________________

12

It follows that X
[flt ]fl (and similarly ~~~~~~ 

is a un iform ly integrable

sequence in n. Consequently, EX [flt]:fl 
+ F4 (t) and EY Ent ] :n + G ’(t) as

n + 
~~. Hence the limit in (4.4) exists and equals F 1

(t + h) - F ( t )  But
G (t + h) - G Ct)

since G4F is convex on (-a, F4(l))o~i (-
~~, 

F 1(l))for 0 < t1 < t
2 

< t2 + h < 1;

0 < h < 1, then

C4F(F4(t1 + h)) 
- G4F(F4(t1) G ’F(F4(t2 + h) - C4F(F 4 (t 2 ))

F4(t1 + h) - F4(t1) F4(t2 + h) - F4 (t 2 )

Equivalently, the limit in (4.4) is decreasing in t (0 < t < t + h < 1) for all

h ( 0 < h < l ) .

A similar argument yields the result when FAG. I I
• Our next result concerning convex (concave) ordering and order statistics

is an immediate consequence of the following lemma of Barlow and Proschan (1966).

Lemma 4.4. (Lemma 3.5 of Barlow and Proschan, 1966). Let Fj:~ denote the

distribution of the ith order statistic in a sample of size n from a continuous

distribution F defined on (-~~, ~
). Suppose h(x) changes signs k times and

h(i , n) = f h(x)dF~~~(x)

converges absolutely. Then (i)h(i, n) changes signs at most k times as a

function of i = 1, 2, ... , n for fixed n , and changes sign at most k times as

a function of n = 1, 2, ... , for fixed i. Furthermore, if h(i, n) changes

sign exactly k times as a function of i(n), then h( i, n) must have the same

(opposite) arrangement of signs in i(n) as does h(x) , where x, i, and n traverse

their respective domains from left to right.



(ii) h~~ - i, n) changes sign at most k tir-~es as a ft’nction of n = 1, 2, . . . ;

if h(n - i, n) actually does change sign in n exactly k times, then the changes

occur in the sane order as do those of h(x).

Before stating our result, we observe that F c G and EY -c imply that

EX < and consequently that ~~~~ < ~~~~~~~ ~‘i i and n (i = 1, 2, . . . ,  n; n > 1).

Theorem 4.5. Let F C, F be continuous at F1(l), and EY -C

(continuous at F4(0), EY < ~~, and EX < ~). Then (i) for all a > 0  and b > 0 ,

a EX.~:n 
- EY i:n - b changes signs at most twice in i = 1, 2, ... n(!’ 1, 2, ...),

and if twice, from regative to positiv’~ to negative (positive to negative to

positive; (ii) for all a > 0, b > 0, a EXn_ i:n - EYn i:n - b changes signs at

most twice in n = 1, 2, . . . ,  and if twice, fror’. negative to positive to

negative (positive to negative to positive).

Proof. Let F < C and let $(x) = G~~F(x). Then • is convex. Thus for

a � 0, b � 0, (ax - b) - •(x) changes signs at most twice, and if twice, from

negative to positive to negative. Hence 
~~~~ Lemma 4.4(i),

h(i, n) J~(ax - b -

= aEX. - b - EY.i :n i:n

changes sign at most twice in i = 1, 2, . . . ,  n(n = 1, 2, . . . ) ,  and if twice ,

from negat~’,e to positive to negative. Thus (i) follows.

A similar argument using part (ii) of Lemma 4.4 yields (ii). For the case

F~~ C, the proof is similar. 
~

We now present a converse to Theorem 4.5 (ii). 

• • •~~~~
_
~~~~~~~~~~~~~~~~~~~~~~~ . ‘~
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Theorem 4.6. Let the support of F be an interval and let F be continuous

at F ’(O). Suppose for all a � 0 and b � 0, and infinitely many n � 1,

aEXj:n - EYi n  - b changes signs at most twice in i = 1, 2, ..., n, and if

twice, from negative to positive to negative. Then F C.

Proof. Let a � 0, b � 0. Since F4(t) and G4(t) are points of increase

for all t (0 -c ~ -c 1), then aF4(t) - G ’(t) - b = 1in1(aEX
[~~].fl 

- EY
[ J  

- b)

changes signs at most twice in t (0 < t < 1), and if twice, from negative to

positive to negative. Letting t = F(x), we get that ax - b - G4F(x) changes

signs at most twice in x (F4(0) < x -c F4(l)). Since F is continuous at

F4(0) and G 1F is strictly increasing in x(-~ < x < ~), G
’F is convex on

(-
~~~, 

F4(l), as desired. H
A result similar to Theorem 4.6 is available for concave ordering but we

omit it.

The next theorem concerns the ratios of order statistics.

Theorem 4.8. Let F < (
~,) 

G and let F be continuous at F~~(l) (at F
4(0)).

Then

Y. - Y. X. - X .i+1:n x:n~~~,%t, i+l:n i:n
Y .  - Y. ~~‘x. - x.i:n i—1:n i:n i—l:n

for all i and n (i = 2, 3, ..., n - 1; n � 2).

Proof. Let F C and let 
~
‘!:n = C~

’F(X j:~) for i = 2, 3, ..., n - 1; n � 2.

Then (Yj:n ’ ‘ 
~i’a:n~ 

~ 
~~l:n’ ~ 

‘
~n:n~ 

since F C and F continuous at

F4(l) imply that F is continuous. ~ince (~~ F is convex , then

-i
~~~ - ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 

— —  —
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- ‘
~
‘
~ :n x~ 1 -

Y ’  -Y ’ - xi:n i—l:n i:n i—l:n

for i 2, 3, . . . ,  n - 1; n � 2. Since

Y - Y  Y ’i+l :n i:n~~ j+l:n i:n
~~

— 

- Y  ~
“ - Y li:n i—l :n i:n i-1:n

the conclusion follows in the case F < C.
c

A similar argument yields the conclusion when F~~ C. ~l
If F a(~

c
~)G it is reasonable to expect that information about the order

statistics ‘
~l:n ’ ~

‘
2:n’ •~~ 

‘
~n:n 

yields information about the order statistics

~~~~ ~~~~ ~~~ 
X~•~~• Theorem 4.9 shows one way this expectation is fulfilled.

Other examples will follow.

Theorem 4.9. Let F ~ (~ ,)G and the support of F be an interval. Let

l < i  < j  < L < n , i < k < i , a n d a > 0 .  Then

P[Y - Y. ~ a(Y - Y. )]  �(~) P[X - X . � a(X. - X . )] .t:n j:n k:n i:n L:n j:n k:n i:n

Proof. Let F -c C and 9 ,  Y~~~, ~~~~~~~ 
‘
~i:n be as in the proof of Theorem

4.~ . Let •(y) be the concave function F ’G. Then for 1 � i S j c £ � n and

i -c k S

- 

~~I:n~ ~ ~~“Ln~Y l _ Y ,  Y ’  - Y ’k:n i:n £:n J:n

(see Royden , 1968, p. 108). Hence

• -,. ~~—
- .__
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-

Y ’  - Y ! X - X . ~~~~k:n i:n k.n i:n

Thus for a > 0,

r~ - x .  -1 FV - y ~ 1
pJ~~

:n 
- 

� aj � ~1
t :n 

- 

3 :n 
~ at ,j ~ k:n i:n j

and the conclusion fol lows.

If F
~

c
~
G the proof is similar. H

Let aLJkI be a positive constant for each 9., j, k, and i such that
1 � i -c J S k c £ and let V (X) E 

~
I[X

~ 
- Xj : n  � a&jki(Xk:n - Xi:nfl~ 

where

the su nation ranges over all i, j, k and £ such that 1 � i ~ k < £ . Equivalently,

V~(X) is the number of comparisons for which the inequality ~~~ 
- Xjn 

�

aLik~
(Xk.fl - Xj:n) holds as i, j ,  k and £ range over the appropriate domain.

We can now state a corollary of Theorem 4.9 which can be used for nonparametric

tests for F ~(~~)C; in particular , tests for IFR, SDFR, and decreasing aensity.

Corollary 4.10. Let F ~(~~)G and the support of F be an interval. Then

V ( Y ) ~ ~~~ V~(X).

_ _ _ _ _ _  _ _ _ _ _
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• S. Stat-shaped (Antistar shaped) Ordering and Order Statistics.

In this section we consider another ordering, namely stat-shaped (anti-

stat-shaped) ordering. The first result gives a necessary and sufficient con-

dition in terms of the order statistics for two life distributions to be

related under the stat-shaped (antistarshaped) ordering.

Theorem 5.1 Let F and G be continuous life distributions with finite

• means. Assume that the supports of both P and G are intervals and that

G(0) a P(0) a 0, Then P ~(3
C
~)G if and only if ~~~~~~~~~ is decreasing

(increasing) in i(i a 1, 2, . . .,  n) for infinitely many n.

Proof. We prove F ~ G if and only if ~~~~~~~~~ is decreasing in

i(i • 1, 2, . . .,  n) for infinitely many n. The counterpart result for F ~~ G

has a similar proof. The “only if” part is Theorem 3.6 of Barlow and

Proschan (1966).

To show th~ “if’ part recall that in the proof of Theorem 4.4 we showed

that EX
(
~~~tl :~~~ 

4. F~
1(t) and EY[t] G~~(t) as n +~~~~ Thus if

EX ffltJ:fl/EY (fltj:fl is decreasing in t (0 -c t < 1), then F4(t)/G4(t) is

decreasing in t (0 -C t -c 1). Equivalently, F (F(x))/G (F(x)) a x/G F(x)

is decreasing (increasing) in x(0 -c x c F4(l)). Th. “if” part follows. H
Corollary S..~~ (Theorem 5.6 of Langberg, Le6n, and Proschan). Let P be

a continuous life distribution with finite mean. Assume that the support of

• . F is an interval and that F(0) • 0. Then F is IFRA(DFRA) if and only if
i

~ (n - k + i)~~ is decreasing (increasing) in i (i a 
~~, 2, ..., n) for

• k—I
infini tely many n. 

- •

. .~~~ 
— -—-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-- -~~~~~~~~~~ - -~~ -~~~~~ ~~-- -. - - .‘-. -
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i
Proof. With G(x) - 1 - a

X in Theorem 5.1, ~~~~ — ~~ (n - k • 1)
_i 

for
k—i

i a 
~~~ 2, . . .,  n (see Bar low and Proschan, 1975, p. 60). The conclusion

follows. I~
Corollary 5.3. Let F be as in Corollary 5.2. Then F is a life distribution

with decreasing density if and only if (n/i) EXj:n is increasing in i

Ci — 1, 2, ...,  n) for infinitely many n.

Proof. With G the uniform distribution on (0, 1), EYj:n - i/(n + 1) for

i — l , 2 , ..., n. I I
As in the case F ~~~~~~ if F ~(~C

~)G, then information about the order

statistics, 
~l~n”~2:n’ 

“
~~~~
‘ “n:n yields information about the order statistics

Kl l  X21~ ~~~~~~~ ~~~~ The next t-.so theorems show two ways to make the above

statement precise.

Theorem 5.4. Let F -
~(~~~) 

G and the support of P be an interval. Then

~
‘i :n~~ 

(
5
~ )a ~~~ implies X. c (~~)a ~~~~ where ~ -c a < 1 and 1 i < j -c n, n > 2.

Proof. Let 9:n’ ~~:n’ ~~~~~~
‘ 
Yi!i:n be as in the proof of Theorem 4.8.

Then for i ‘

X = F G ~~(Y! )i:n

5at F G~~(Y~.~)

~ (~~)F G
4(a ‘

~j:n~

� (~~)a F G~~(Y~~~)

[since F is antistarshaped (starshaped) ]

• a F G~~(YJ )

~~~~~~~

L~ 
- -

~~~~~~~~~~~~~~~~ - .- 
~~~~~~~~~~~~~~~~~~~~~~~ 

- -
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Hence X~~~~~(V)a X. .  H
Theorem 5.5. Let F ~(~ç1)G and the support of F be an interval. Let

l � i < J S n and a~~~0. Then

~ ~“i:n~ ~~~~~ 
P(Xj:n � a Xi ).

Proof. Let F ~ C and 9:n’ Y~:n i ‘“‘ 
‘
~
‘
i~t:n 

be as in the proof of Theoren-

4.8. Let •(y) be the antistarshaped function F
1G. Then for 1 S i � j S n,

$(Y ! ) •(Y! )
— �

i:n

Hence

X.

The conclusion follows as in the proof of Theorem 4.9.

If F a~ 
G, the proof is similar.

It is clear that a corollary to Theorem 5.5 can be fashioned along the

lines of Corollary 4.10. This corollary can be used for nonparametric tests

for F 
~(lL

c
*) C; in particular, for tests for IPRA and DFRA.

We prove a converse of Theorem 5.4.

• Theorem 5.6. Let the support of F be an interval. Suppose

~~i:n ~
(�)a EYJ:n impl ies EX~ ~(S)a EXj:n for all a( 0 ( a -C 1) and all

j  j, ,~ (1 ~ i < j Sn). Then F

Proof. Suppose F ~ C is not true. Then there exist an a (0 < a C 1) and

an x � 0 such that G4F(ax) > a G4F(x). Therefore there exists a y - x such

that G4F(ax) > a G4F(y). Hence for n sufficiently large, EY LnF(ax)]:n ‘

a 
~~(nP(y)]:n 

By hypothesis, this implies that for n sufficiently large,

• ‘
~~(nF(ax)):n 

a EX[~p(y)).~ . Consequently F4(P( ax)) ~ a P 4(P(y )) ;  that is ,

ax ~ ay - a contradiction. I

L. ~~- .
~~~ 

.. - • •  
- -_ _ _ _ _ _  

..  

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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